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Synchronization induced by Langevin dynamics
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Equilibrium Langevin dynamics of one-dimensional Lennard-Jones chains is studied. It is shown that de-
pending on the noise strength, the friction constant and the number of particles, chains can synchronize, break,
or remain desynchronized. Generally the synchronization time and the maximal Lyapunov exponent are found
to depend on the number of particles and the ratio of noise strength to friction constant.
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Dynamics of nonlinear systems exhibiting chaotic mo-estingly, on approaching the boundary, an intermittent be-
tions shows an extreme sensitivity to even minor perturbahavior of the distance function was observed. Also, it was
tions. This feature, also often referred to as Lorématterfly ~ found that the laminar distribution as function of the laminar
effect,” makes long-time evolution of the systems unpredict-length follows the—3/2 power law, which characterizes the
able. Consequently, trajectories of identical chaotic system@n-off intermittency. Analogous observations have been re-
that start their evolution from different initial points in phase ported for the Lorenz mod¢b], but no analysis of the sys-
space are not expected to synchronize, and using a randoiém behavior in the vicinity of the boundary was carried out.
resetting signal should make them even “more random.” One of the objectives of the present studies is to check the
Referenceg1—-4] were the first to discuss very intriguing hypothesis of Rinet al.[10] for models with more than one
possibilities, counterintuitive to the above expectations. Foglegree of freedom. We are interested in realistic situations
example, Fahy and Hammd#] studied a system of two Where trajectories are generated by ordinary, equilibrium
noninteracting particles moving chaotically inside a confin-Langevin dynamics, with both dissipation and noise being
ing potential. Velocities of the particles were randomly resefresent. That is, we assume the noise and the friction to
according to the Maxwellian distribution at regular time in- follow restrictions imposed by the fluctuation-dissipation
tervalsr. They observed that for less than a threshold value theorem. Clearly, the noise of vanishing mean should be con-
the distance between the trajectories was convergent expgidered, in which case the synchronization is harder to get
nentially to zero with increasing time, independent of the[9]. We are also interested in the system size dependence of
initial conditions of the particles. the synchronization. A numerical evidence showing that

Since then investigation of synchronization process irsuch “Langevin synchronization”is indeed possible has
chaotic systems has been an active line of reseigeli3d.  been reported by Cattuto and Marchespid] for a per-
Essentially, the following types of synchronization are iden-turbed, stochastic, sine-Gordon equation. But no explanation
tified: (i) synchronization through a coupling of identical as of the mechanism responsible for it has been proposed.
chaotic systems in a drive-response manner as proposed in Interestingly, as we show by detailed studies of a one-
Ref.[3]; (i) synchronization of identical chaotic systems by dimensional model, the equilibrium Langevin dynamics in-
common noisessee, e.g., Refd4—10)); (iii) synchroniza- deed could lead to a collapse of the trajectories. It is ob-
tion of time-delayed systenisee, e.qg., Ref11)); (iv) partial served for certain values of ratio of the noise strength to the
synchronizatior(see, e.g., Ref12]) and(v) generalized syn- friction constant, for practically all nonzero temperatures.
chronization between nonidentical systefh8]. Furthermore, the numerical results indicate that the number

The main purpose of the present Rapid Communication i®f particles and details of the noise profile are of secondary
to study the chaotic synchronization as induced by commo#mportance for the collapse to occur. Also, particles do not
external noises. For many years the subject has been quif¢ed to move in a confining potential, as in the case dis-
controversial(see, e.g.[8] and references therdiand only ~ cussed by Fahy and Hammgd.
recently it has been approached in a systematic way by Lai In an attempt to address the above issues, we have per-
and Zhou9], and by Rimet al.[10]. In particular, a sugges- formed computer simulations on one-dimensional chains.
tion has been put forward in RdfL0] that any deterministic, We used the simplest version of Langevin dynamics, where
chaotic system should synchronize given that an appropriaté@€ motion of an ensemble of identical particles is described
noise profile is applied. As a support of this conjecture aby the phenomenological Langevin equation consisting of
Computer ana|ysis of two |ogistic maps, Coup|ed by uniforminertial terms, force field, frictional drag, and noise, respec-
additive noise of widthb and biasa, has been carried out tively. For a one-dimensional case it reads
[10]. More specifically, it was shown that in tha,p) plane

there is a line separating chaotic noisy behavior from the m'fiZ—VriV—m?’-meFi(t)- (1)
nonchaotic noisy one, and that the region of coalescence is
characterized by the nonvanishing mean of the noise. Intederer;, i=1,... N, is the coordinate of theth particle of
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massm of a chain, moving in a potentidl. At equilibrium  Assuming that the Brownian force is constant in the interval
the friction y is related to the noisd;(t) through the At and taking regard of the fluctuation-dissipation theorem
fluctuation-dissipation theorem. we get for the Gaussian noise

The noise term, Eq1), describing the interaction with a
thermal reservoir at temperatufe usually is represented by

the Gaussian stationary random force such that o=1/2ymkgT/At, 3

Fi()=0, Fi(OF;(t)=28;8t—t")ymkgT, (2) in agreement with the E(ﬁ2)._ For the non-Gaussian case the
factor “2” of the last equation should be replaced by “6.”
As expected, for fixedy andT, both noise profiles yield the
o N calculated equilibrium averages that are indistinguishable to
where the coefficients of the second condition follow fromithin the statistical error. For more details see RELS,17,
the fluctuation-dissipation theorem. The term proportional tQyhere the Langevin dynamics of the same Lennard-Jones
velocity represents the average force from the environmenghain has been used to model a fragmentation process in
acting on the particle and giving rise to viscosity, or friction. polymers. In our calculations we adopt the system of reduced
Fi(t) takes into account the rapidly varying part of the force,ynits from these references.
bearing in mind the very frequent individual impacts of mol-  For integration of the equations of motion the velocity
ecules with the observed particles. For example, in polymeyeriet algorithm[18] is used with the time step 0.00005
physics, the frictional drag and noise simulate the effect ofgmlrogo'% (ro=2mlwy, wo=12y2e/ma? [16,17).
individual solvent molecules acting on a polynieee €.9., Ty types of boundary conditions are applied. The first one,
Refs.[15-17). Clearly, the Langevin dynamics is relevant yhich we call a free chaifFC) simulation, assumes fixed
not only to polymer physics. It also plays an important roleyqsition of centers of mass of both chains at a common ori-
in the description of problems in mathematics, astrophysicsyin and vanishing center of mass velocities. More specifi-
chemical physics, biology, laser physics, etc. ~cally, after bringing both chains to equilibrium we fix their
Now the question that arises is whether the Langevin dygenter of mass parameters as described above and these pa-
namics mde_ed cogl_d yield sync_hronlzanon. In a trivial Sens§ameters argreserved up to irrelevant fluctuations, by the
the answer is positive. To see it, suppose that the dynamiceriet algorithm. Clearly, the fluctuations arise because the
Eq. (1), with noise and friction switched off. is chaqt!c, .., total random force,SF,, acting on the system follows
with the maximal Lyapunov exponent being positive. By Gayssian distribution according to the central limit theorem.
switching the friction on and disregarding the chaotic party, simplify our code that monitors the breaking of the chain
one forces the system to evolve to its ground state, whicly,q disregard these fluctuations by addingXcy/N
plays the role of.an attractpr. Cpnsequgntly, the synchro.nl(ngM/N) to positions(velocitieg of each particle at every
zation could easily be realized in practice. In the oppositgime’step, so that the parameters of the center of mass are left
case, wheré&,(t) is nonzero and/= 0, at least in the limit of unchanged.
weak Fi(t), the Lyapunov exponent should remain positive  The second type of boundaries, referred to as restricted
preventing the system to have synchronizing propertiesehain (RC) simuiation, confine the systems to an interval
Consequently, for a fixed distribution of the noise therer L=Na] with x,=0 andxy=L. In both cases initial ve-
should exity*, such that fory>y* the system synchronizes |qcities of the particles are taken independently from the

while otherwise it does not. Clearly, the above reasoning igyaxwell distribution, separately for each chain. The variance
generally valid and does not restrict to the one-dimensionalt the distribution is set equal tkgT/2me, wherekgT/e

chains. o _ takes the same value as the one used in®qgAdditionally,
Interestingly, the synchronization could also be achievedyitia| positions of the particles are chosen with uniform dis-

if we assume that the restrictions due to the fluctuationy;inution about ground state configuratiGregular 1—d lat-
dissipation theorem are fulfilled. This statement is not trivialtice) with maximal displacement not exceeding @.2ZThe

anymore, and we do not have a general proof of it. HoweverSystems are studied for the reduced temperatid/e,

we can demonstrate its validity by considering, e.g., the eq“'\'/arying between 0.001 and 0.08is restricted to 10, 20, 30,

librium Langevin dynamics of two identical copies of a one- 50, 100, and 1000, but most of the simulations are carried
dimensional chain composed Nf particles of equal masses out for N=10 andN=100. The synchronization is moni-

m. Within each ghain par?icles are assumed to intergct wit ored by calculating relative distande, and relative veloc-

their nearest-neighbors via a Lennard-Jones potential. Def)- . N 1 22

nitions we use are given in RefL6]. ity V between the chainsbD= \/1/N2i=1(xi —x7)“, and
Particles of index of both chains are next subjected to V=yLNSN ,(VE-V?)2, where superscripts label the

the same thermal batff;}. Detailed simulations are carried chains.x| andV,| are the position and the velocity of a par-

out for two noise profiles: for the standard Gaussian one anticle i of the chainl (I=1,2), respectively. We also deter-

for a non-Gaussian nois¢F; = o7}, where7; are the ran- mine the maximal Lyapunov exponent.

dom numbers uniformly distributed on the intervall< #; In the case otr=y=0 the reference system is character-

=<1. The value of the noise strengéhdepends on the time ized by the positive Lyapunov exponent and, consequently,

incrementAt that one uses to numerically integrate Ef.  no collapse is possible. However, the situation changes when
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FIG. 1. Reduced timet(r,) dependence of the relative dis- FIG. 3. Maximal Lyapunov exponent as function of the number

tance, InD/a)=In(D), for various reduced time stepsit/z, of particles within the chain. Parameters used are0.25w,,
=0.05, 0.005, 0.0005, and 0.000 05, and kgiT/e=0.01 andy kgT/e=0.05, At=0.01ry, ando= y2mkgTy/At [16].

=0.250,. Both chains are composed of ten particles. The curve is

erratic, but the assumed scale of fheaxis makes it look smooth.

Similar behavior is found for relative velocity. =10, 100, and 1000 indicating on a linear dependence be-

tween o/ o and y/y, along the boundary. Statistically the

the noise and the friction are switched on. As it turns out theSame results are obtained for the non-Gaussian noise, which

most intriguing are the FC simulations. In this case the forcd'® checked foN=100. Owing to a very sme}ll value of the
field does not confine particles within the chain and, hence-YaPunov exponent foN=1000, which requires extremely
the time evolution of a single, unconfined chain for 0 is ~ 10Ng Molecular dynamics runs, we have carried out detailed
such that its average dimension grows with increasing timeSimulations in this case only for the Gaussian case.

i.e., the chain breakEl7]. But even in this case we may  Ihe collapse occurs when the parametersoy, ¥/vo)
observe synchronization, as illustrated in Fig. 1, althougtfre taken from the area below the separatrices in Fig. 2.
relation between synchronization, initial conditions and theMore specifically, for fixed\N and /o the values ofy/ y,
noise strength still has to be elucidated. What we observe ishould be greater than a threshold value, whiah already
that trajectories of two initially uncorrelated identical chainsmentioned above obeys the heuristic lawo/ oo/ ¥/ v
subjected to the same Langevin noifg;}, may indeed col- = const. The corresponding temperatdivd , is found from
lapse to a single trajectory in the sense that the average disendition (3), which could also be written aso/oy
tance between them converges exponentially to zero. The [, T/(v,T,), independent of the applied noise profile.
collapse starts after the transient period, which is shown agonversely, in the T/T,,y/ yo)-plane the separatrices are
plateau in Fig. 1. Th|s.plqteau grows with decreasing NOiS§iven by analogous linear relationTAT,) /(y/yo) = const,
strength, Eq(3), and with increasing\. implying that for fixed relative temperaturd{T,) the fric-

F(_)r_ RC 5|mL_JI_at|ons the system is confined a_md, hen(_: ion must again be greater than the threshold to observe syn-
any initial conditions can be used to start evolution. In th'schronization

case we found generally that synchronization depends on the A typical behavior of the Lyapunov exponent as function

ratio of the noise strength to friction constant, of N in the nonchaotic noisy region is shown in Fig. 3. For
By calculating numerically the maximal Lyapunov expo- N d for th del y reg " tudied dg. ' t ob
nent we determined the boundaries in the/ &g, ¥/ vo) all Ns and for the model parameters studied we do not ob-

plane KeTo/€=0.05, yo=0.2505, o= 2MksToye/At serve, within the statistical error, a crossover from noncha-
B'O - Y. ’ 0— VY- 0> 0o~ 070

[16]), where the Lyapunov exponent changes sign. The reotic to chaotic noisy behavior as a function Rf On ap-

sults for the Gaussian noise are shown in Fig. 2 Kor proaching the. b°“’?dary the d_istance _function_ shows a
characteristic intermittent behavior, consistent with the ob-

, servations of Rimet al. [10]. However, owing to the large

fluctuations in the transition regime, as indicated by error
o 08 . bars in Fig. 2, we were unable to determine unequivocally
8 0.6l 1 the characteristic exponent of the laminar distribution.
g ’ It is perhaps worthwhile to emphasize that the equilib-
2 04r 1 rium, fixed temperature, Langevin dynamics could be carried
g out on both sides of the separatrices in Fig. 2; that is, either

0.2r s . . . . .
in the chaotic noisy regiofpositive Lyapunov exponenbr

% 01 02 03 0.4 in the nonchaotic noisy ongegative Lyapunov exponent
From the discussion as given these features seem to be in-
herent to the structure of the Langevin equations.

FIG. 2. Boundaries in the plan@oise strength, friction con- In conclusion, we have investigated in detail a possibility
stani=(o/oy, yly,) where the maximal Lyapunov exponent Of the chaotic synchronization in the case when the dynamics
changes sign. Parameters used kgd,/e=0.05, y,=0.250, of the identical systems is governed by ordinary Langevin
At=0.01r, and oo= \6mkg Ty, /At [16]). The region below the equations. By studying the Lennard-Jones chains of various
boundary line is where the synchronization takes place. lengths we showed that the synchronization can occur even

friction constant
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when the frictional drag and thgymmetricnoise obey the intermittent behavior, but, owing to large fluctuations close
fluctuation-dissipation theorem. This statement holds indeto transition region we were unable to analyze scaling prop-
pendent of the system size studigd least up tdN=1000). erties of the laminar distribution.

The results also seem independent of the details of the noise

profile. For this nontrivial synchronization we recovered a

picture suggested by Rimt al. [10] in which the transition This work was supported in part by the Polish project
from a chaotic to a nonchaotic noisy region goes through afkKBN) No. 5P03B05220, by CAPES and CNPq in Brazil.
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