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Synchronization induced by Langevin dynamics

M. Cies̀la,1 S. P. Dias,2,3 L. Longa,1,2,3 and F. A. Oliveira2,3

1Department of Statistical Physics, Jagellonian University, Reymonta 4, Krako´w, Poland
2Instituto de Fı´sica, Universidade de Brası´lia, Campus Universita´rio Darcy Ribeiro, CP 04513, CEP 70919-970 Brası´lia, DF, Brazil
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Equilibrium Langevin dynamics of one-dimensional Lennard-Jones chains is studied. It is shown that de-
pending on the noise strength, the friction constant and the number of particles, chains can synchronize, break,
or remain desynchronized. Generally the synchronization time and the maximal Lyapunov exponent are found
to depend on the number of particles and the ratio of noise strength to friction constant.
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Dynamics of nonlinear systems exhibiting chaotic m
tions shows an extreme sensitivity to even minor pertur
tions. This feature, also often referred to as Lorenz‘‘butterfly
effect,’’ makes long-time evolution of the systems unpred
able. Consequently, trajectories of identical chaotic syste
that start their evolution from different initial points in pha
space are not expected to synchronize, and using a ran
resetting signal should make them even ‘‘more random
References@1–4# were the first to discuss very intriguin
possibilities, counterintuitive to the above expectations.
example, Fahy and Hamman@4# studied a system of two
noninteracting particles moving chaotically inside a confi
ing potential. Velocities of the particles were randomly re
according to the Maxwellian distribution at regular time i
tervalst. They observed that fort less than a threshold valu
the distance between the trajectories was convergent e
nentially to zero with increasing time, independent of t
initial conditions of the particles.

Since then investigation of synchronization process
chaotic systems has been an active line of research@5–13#.
Essentially, the following types of synchronization are ide
tified: ~i! synchronization through a coupling of identic
chaotic systems in a drive-response manner as propose
Ref. @3#; ~ii ! synchronization of identical chaotic systems
common noises~see, e.g., Refs.@4–10#!; ~iii ! synchroniza-
tion of time-delayed systems~see, e.g., Ref.@11#!; ~iv! partial
synchronization~see, e.g., Ref.@12#! and~v! generalized syn-
chronization between nonidentical systems@13#.

The main purpose of the present Rapid Communicatio
to study the chaotic synchronization as induced by comm
external noises. For many years the subject has been
controversial~see, e.g.,@8# and references therein! and only
recently it has been approached in a systematic way by
and Zhou@9#, and by Rimet al. @10#. In particular, a sugges
tion has been put forward in Ref.@10# that any deterministic,
chaotic system should synchronize given that an approp
noise profile is applied. As a support of this conjecture
computer analysis of two logistic maps, coupled by unifo
additive noise of widthb and biasa, has been carried ou
@10#. More specifically, it was shown that in the (a,b) plane
there is a line separating chaotic noisy behavior from
nonchaotic noisy one, and that the region of coalescenc
characterized by the nonvanishing mean of the noise. In
1063-651X/2001/63~6!/065202~4!/$20.00 63 0652
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estingly, on approaching the boundary, an intermittent
havior of the distance function was observed. Also, it w
found that the laminar distribution as function of the lamin
length follows the23/2 power law, which characterizes th
on-off intermittency. Analogous observations have been
ported for the Lorenz model@6#, but no analysis of the sys
tem behavior in the vicinity of the boundary was carried o

One of the objectives of the present studies is to check
hypothesis of Rimet al. @10# for models with more than one
degree of freedom. We are interested in realistic situati
where trajectories are generated by ordinary, equilibri
Langevin dynamics, with both dissipation and noise be
present. That is, we assume the noise and the friction
follow restrictions imposed by the fluctuation-dissipatio
theorem. Clearly, the noise of vanishing mean should be c
sidered, in which case the synchronization is harder to
@9#. We are also interested in the system size dependenc
the synchronization. A numerical evidence showing th
such ‘‘Langevin synchronization’’ is indeed possible ha
been reported by Cattuto and Marchesoni@14# for a per-
turbed, stochastic, sine-Gordon equation. But no explana
as of the mechanism responsible for it has been propose

Interestingly, as we show by detailed studies of a o
dimensional model, the equilibrium Langevin dynamics
deed could lead to a collapse of the trajectories. It is
served for certain values of ratio of the noise strength to
friction constant, for practically all nonzero temperature
Furthermore, the numerical results indicate that the num
of particles and details of the noise profile are of second
importance for the collapse to occur. Also, particles do
need to move in a confining potential, as in the case d
cussed by Fahy and Hamman@4#.

In an attempt to address the above issues, we have
formed computer simulations on one-dimensional cha
We used the simplest version of Langevin dynamics, wh
the motion of an ensemble of identical particles is describ
by the phenomenological Langevin equation consisting
inertial terms, force field, frictional drag, and noise, resp
tively. For a one-dimensional case it reads

mr̈i52¹ r i
V2mg ṙ i1Fi~ t !. ~1!

Herer i , i 51, . . . ,N, is the coordinate of thei th particle of
©2001 The American Physical Society02-1
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massm of a chain, moving in a potentialV. At equilibrium
the friction g is related to the noiseFi(t) through the
fluctuation-dissipation theorem.

The noise term, Eq.~1!, describing the interaction with a
thermal reservoir at temperatureT, usually is represented b
the Gaussian stationary random force such that

Fi~ t !50, Fi~ t !F j~ t8!52d i j d~ t2t8!gmkBT, ~2!

where the coefficients of the second condition follow fro
the fluctuation-dissipation theorem. The term proportiona
velocity represents the average force from the environm
acting on the particle and giving rise to viscosity, or frictio
Fi(t) takes into account the rapidly varying part of the forc
bearing in mind the very frequent individual impacts of mo
ecules with the observed particles. For example, in polym
physics, the frictional drag and noise simulate the effec
individual solvent molecules acting on a polymer~see e.g.,
Refs. @15–17#!. Clearly, the Langevin dynamics is releva
not only to polymer physics. It also plays an important ro
in the description of problems in mathematics, astrophys
chemical physics, biology, laser physics, etc.

Now the question that arises is whether the Langevin
namics indeed could yield synchronization. In a trivial sen
the answer is positive. To see it, suppose that the dynam
Eq. ~1!, with noise and friction switched off is chaotic, i.e
with the maximal Lyapunov exponent being positive. B
switching the friction on and disregarding the chaotic p
one forces the system to evolve to its ground state, wh
plays the role of an attractor. Consequently, the synchr
zation could easily be realized in practice. In the oppos
case, whereFi(t) is nonzero andg50, at least in the limit of
weak Fi(t), the Lyapunov exponent should remain positi
preventing the system to have synchronizing propert
Consequently, for a fixed distribution of the noise the
should exitg* , such that forg.g* the system synchronize
while otherwise it does not. Clearly, the above reasoning
generally valid and does not restrict to the one-dimensio
chains.

Interestingly, the synchronization could also be achiev
if we assume that the restrictions due to the fluctuati
dissipation theorem are fulfilled. This statement is not triv
anymore, and we do not have a general proof of it. Howev
we can demonstrate its validity by considering, e.g., the e
librium Langevin dynamics of two identical copies of a on
dimensional chain composed ofN particles of equal masse
m. Within each chain particles are assumed to interact w
their nearest-neighbors via a Lennard-Jones potential. D
nitions we use are given in Ref.@16#.

Particles of indexi of both chains are next subjected
the same thermal bath$Fi%. Detailed simulations are carrie
out for two noise profiles: for the standard Gaussian one
for a non-Gaussian noise:$Fi5sh i%, whereh i are the ran-
dom numbers uniformly distributed on the interval21<h i
<1. The value of the noise strengths depends on the time
incrementDt that one uses to numerically integrate Eq.~1!.
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Assuming that the Brownian force is constant in the inter
Dt and taking regard of the fluctuation-dissipation theor
we get for the Gaussian noise

s5A2gmkBT/Dt, ~3!

in agreement with the Eq.~2!. For the non-Gaussian case th
factor ‘‘2’’ of the last equation should be replaced by ‘‘6.
As expected, for fixedg andT, both noise profiles yield the
calculated equilibrium averages that are indistinguishable
within the statistical error. For more details see Refs.@16,17#,
where the Langevin dynamics of the same Lennard-Jo
chain has been used to model a fragmentation proces
polymers. In our calculations we adopt the system of redu
units from these references.

For integration of the equations of motion the veloc
Verlet algorithm @18# is used with the time step 0.000 0
<Dt/t0<0.05 (t052p/v0 , v0512A2e/ma2 @16,17#!.
Two types of boundary conditions are applied. The first o
which we call a free chain~FC! simulation, assumes fixed
position of centers of mass of both chains at a common
gin and vanishing center of mass velocities. More spec
cally, after bringing both chains to equilibrium we fix the
center of mass parameters as described above and thes
rameters arepreserved, up to irrelevant fluctuations, by th
Verlet algorithm. Clearly, the fluctuations arise because
total random force,(Fi , acting on the system follows
Gaussian distribution according to the central limit theore
To simplify our code that monitors the breaking of the cha
we disregard these fluctuations by addingdXCM /N
(dVCM /N) to positions~velocities! of each particle at every
time step, so that the parameters of the center of mass ar
unchanged.

The second type of boundaries, referred to as restric
chain ~RC! simulation, confine the systems to an interv
@0, L5Na# with x150 andxN5L. In both cases initial ve-
locities of the particles are taken independently from
Maxwell distribution, separately for each chain. The varian
of the distribution is set equal tokBT/2me, where kBT/e
takes the same value as the one used in Eq.~3!. Additionally,
initial positions of the particles are chosen with uniform d
tribution about ground state configuration~regular 12d lat-
tice! with maximal displacement not exceeding 0.2a. The
systems are studied for the reduced temperature,kBT/e,
varying between 0.001 and 0.05.N is restricted to 10, 20, 30
50, 100, and 1000, but most of the simulations are carr
out for N510 andN5100. The synchronization is moni
tored by calculating relative distance,D, and relative veloc-

ity V between the chains:D5A1/N( i 51
N (xi

12xi
2)2, and

V5A1/N( i 51
N (Vi

12Vi
2)2, where superscripts label th

chains.xi
I andVi

I are the position and the velocity of a pa
ticle i of the chainI (I 51,2), respectively. We also dete
mine the maximal Lyapunov exponent.

In the case ofs5g50 the reference system is characte
ized by the positive Lyapunov exponent and, consequen
no collapse is possible. However, the situation changes w
2-2
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the noise and the friction are switched on. As it turns out
most intriguing are the FC simulations. In this case the fo
field does not confine particles within the chain and, hen
the time evolution of a single, unconfined chain forT.0 is
such that its average dimension grows with increasing ti
i.e., the chain breaks@17#. But even in this case we ma
observe synchronization, as illustrated in Fig. 1, althou
relation between synchronization, initial conditions and
noise strength still has to be elucidated. What we observ
that trajectories of two initially uncorrelated identical chai
subjected to the same Langevin noise,$Fi%, may indeed col-
lapse to a single trajectory in the sense that the average
tance between them converges exponentially to zero.
collapse starts after the transient period, which is shown
plateau in Fig. 1. This plateau grows with decreasing no
strength, Eq.~3!, and with increasingN.

For RC simulations the system is confined and, hen
any initial conditions can be used to start evolution. In t
case we found generally that synchronization depends on
ratio of the noise strength to friction constant.

By calculating numerically the maximal Lyapunov exp
nent we determined the boundaries in the (s/s0 , g/g0)
plane (kBT0 /e50.05, g050.25v0 , s05A2mkBT0g0 /Dt
@16#!, where the Lyapunov exponent changes sign. The
sults for the Gaussian noise are shown in Fig. 2 forN

FIG. 1. Reduced time (t/t0) dependence of the relative dis
tance, ln(D/a)[ln(D), for various reduced time steps:Dt/t0

50.05, 0.005, 0.0005, and 0.000 05, and forkBT/e50.01 andg
50.25v0. Both chains are composed of ten particles. The curv
erratic, but the assumed scale of theD-axis makes it look smooth
Similar behavior is found for relative velocity.

FIG. 2. Boundaries in the plane~noise strength, friction con-
stant!5(s/s0 , g/g0) where the maximal Lyapunov expone
changes sign. Parameters used arekBT0 /e50.05, g050.25v0 ,
Dt50.01t0 ands05A6mkBT0g0 /Dt @16#!. The region below the
boundary line is where the synchronization takes place.
06520
e
e
e,

e,

h
e
is

is-
he
as
e

e,
s
he

e-

510, 100, and 1000 indicating on a linear dependence
tweens/s0 and g/g0 along the boundary. Statistically th
same results are obtained for the non-Gaussian noise, w
we checked forN<100. Owing to a very small value of th
Lyapunov exponent forN51000, which requires extremel
long molecular dynamics runs, we have carried out deta
simulations in this case only for the Gaussian case.

The collapse occurs when the parameters (s/s0 , g/g0)
are taken from the area below the separatrices in Fig
More specifically, for fixedN ands/s0 the values ofg/g0

should be greater than a threshold value, which~as already
mentioned above! obeys the heuristic laws/s0 /g/g0

5const. The corresponding temperatureT/T0 is found from
condition ~3!, which could also be written as:s/s0

5AgT/(g0T0), independent of the applied noise profil
Conversely, in the (T/T0 ,g/g0)-plane the separatrices ar
given by analogous linear relation: (T/T0) /(g/g0)5const2,
implying that for fixed relative temperature (T/T0) the fric-
tion must again be greater than the threshold to observe
chronization.

A typical behavior of the Lyapunov exponent as functi
of N in the nonchaotic noisy region is shown in Fig. 3. F
all Ns and for the model parameters studied we do not
serve, within the statistical error, a crossover from nonc
otic to chaotic noisy behavior as a function ofN. On ap-
proaching the boundary the distance function shows
characteristic intermittent behavior, consistent with the o
servations of Rimet al. @10#. However, owing to the large
fluctuations in the transition regime, as indicated by er
bars in Fig. 2, we were unable to determine unequivoca
the characteristic exponent of the laminar distribution.

It is perhaps worthwhile to emphasize that the equil
rium, fixed temperature, Langevin dynamics could be carr
out on both sides of the separatrices in Fig. 2; that is, eit
in the chaotic noisy region~positive Lyapunov exponent! or
in the nonchaotic noisy one~negative Lyapunov exponent!.
From the discussion as given these features seem to b
herent to the structure of the Langevin equations.

In conclusion, we have investigated in detail a possibil
of the chaotic synchronization in the case when the dynam
of the identical systems is governed by ordinary Lange
equations. By studying the Lennard-Jones chains of vari
lengths we showed that the synchronization can occur e

is

FIG. 3. Maximal Lyapunov exponent as function of the numb
of particles within the chain. Parameters used areg50.25v0 ,
kBT/e50.05, Dt50.01t0, ands5A2mkBTg/Dt @16#.
2-3



de

o
a

a

se
op-

ct

RAPID COMMUNICATIONS

M. CIES̀LA, S. P. DIAS, L. LONGA, AND F. A. OLIVEIRA PHYSICAL REVIEW E63 065202~R!
when the frictional drag and thesymmetricnoise obey the
fluctuation-dissipation theorem. This statement holds in
pendent of the system size studied~at least up toN51000).
The results also seem independent of the details of the n
profile. For this nontrivial synchronization we recovered
picture suggested by Rimet al. @10# in which the transition
from a chaotic to a nonchaotic noisy region goes through
i-

v.

E
o,

t.

06520
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intermittent behavior, but, owing to large fluctuations clo
to transition region we were unable to analyze scaling pr
erties of the laminar distribution.
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